



## Course Specification (Bachelor)

Course Title: Classical Mechanics -

Course Code: **PHYS26222** 

Program: Physics

Department: Physics

College: Science

Institution: University of Bisha

Version: 3

Last Revision Date: 25 July 2023







### **Table of Contents**

| A. General information about the course:                                       | 3 |
|--------------------------------------------------------------------------------|---|
| 1. Course Identification                                                       | 3 |
| 2. Teaching mode                                                               | 3 |
| 3. Contact Hours (based on the academic semester)                              | 4 |
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods | 4 |
| C. Course Content                                                              | 4 |
| D. Students Assessment Activities                                              | 6 |
| E. Learning Resources and Facilities                                           | 6 |
| 1. References and Learning Resources                                           | 6 |
| 2. Required Facilities and equipment                                           | 7 |
| F. Assessment of Course Quality                                                | 7 |
| G. Specification Approval Data                                                 | 7 |





### A. General information about the course:

### **1. Course Identification**

| 1. Credit hours: | 3 |
|------------------|---|
|------------------|---|

### 2. Course type

| 4. 0                                           | 4. Course general Description |           |                                         |       |        |
|------------------------------------------------|-------------------------------|-----------|-----------------------------------------|-------|--------|
| 3. Level/year at which this course is offered: |                               |           | 4 <sup>th</sup> Level / 2 <sup>nd</sup> | year  |        |
| В.                                             | Required ⊠                    | Elective  |                                         |       |        |
| Α.                                             | University 🗆                  | College 🗆 | Department⊠                             | Track | Others |
| <b>2</b> . (                                   | Jourse type                   |           |                                         |       |        |

# Classical mechanics -2 Completion of the study of classical mechanics topics, including the subjects of the angular momentum, the static equilibrium and elasticity, gravitation, the fluid mechanics, and the Lagrangian and Hamiltonian formalism.

### 5. Pre-requirements for this course:

PHYS26221 Classical Mechanics -1

### 6. Co- requirements for this course:

NA

### 7. Course Main Objective(s)

Recognize the principles of advanced classical mechanics.

### 2. Teaching mode

| No | Mode of Instruction                                                       | Contact Hours | Percentage |
|----|---------------------------------------------------------------------------|---------------|------------|
| 1. | Traditional classroom                                                     | 3             | 100%       |
| 2. | E-learning                                                                |               |            |
| 3. | <ul><li>Hybrid</li><li>Traditional classroom</li><li>E-learning</li></ul> |               |            |
| 4. | Distance learning                                                         |               |            |





| 3. Contact Hours (based on the academic semester) |                   |               |  |  |
|---------------------------------------------------|-------------------|---------------|--|--|
| No                                                | Activity          | Contact Hours |  |  |
| 1.                                                | Lectures          | 45            |  |  |
| 2.                                                | Laboratory/Studio |               |  |  |
| 3.                                                | Field             |               |  |  |
| 4.                                                | Tutorial          |               |  |  |
| 5.                                                | Others (specify)  |               |  |  |
|                                                   | Total             | 45            |  |  |

### **B. Course Learning Outcomes (CLOs), Teaching Strategies and**

### **Assessment Methods**

| Code | Course Learning Outcomes                                                  | Code of CLOs<br>aligned with<br>program | Teaching<br>Strategies      | Assessment<br>Methods   |
|------|---------------------------------------------------------------------------|-----------------------------------------|-----------------------------|-------------------------|
| 1.0  | Knowledge and understanding                                               |                                         |                             |                         |
| 1.1  | Define the Angular Momentum.                                              | K.1                                     |                             |                         |
| 1.2  | Describe the equilibrium state and the universal gravitation.             | K.1                                     | Lectures                    | Written test<br>Reports |
| 1.3  | Identify the characteristics of fluids.                                   | K.1                                     | Solve problems              | Homework<br>Quizzes     |
| 1.4  | Recognize the Lagrangian and Hamiltonian Formalism.                       | K.1                                     |                             | Quizzes                 |
| 2.0  | Skills                                                                    |                                         |                             |                         |
| 2.1  | Apply the Angular Momentum.                                               | S.1                                     |                             |                         |
| 2.2  | Analyze the equilibrium state and the universal gravitation.              | S.1                                     |                             | Written test            |
| 2.3  | Solve problems related to the motion of fluids.                           | S.1                                     | Lectures<br>Solve problems. | Reports<br>Homework     |
| 2.4  | Solve problems related to the<br>Lagrangian and Hamiltonian<br>Formalism. | S.1                                     |                             | Quizzes                 |
| 3.0  | Values, autonomy, and responsib                                           | ility                                   |                             |                         |
| 3.1  | Exhibit self-learning skills independently.                               | V.2                                     | Self-learning               | Reports<br>Presentation |

### **C.** Course Content

| No | List of Topics                             | Contact Hours |
|----|--------------------------------------------|---------------|
|    | Angular Momentum                           |               |
| 1. | 1. The Vector Product and Torque.          | 4.5           |
|    | 2. Non-isolated System (Angular Momentum). |               |





|     | <ol> <li>Angular Momentum of a Rotating Rigid Object.</li> <li>Isolated System (Angular Momentum)</li> </ol>          |     |
|-----|-----------------------------------------------------------------------------------------------------------------------|-----|
|     | Static Equilibrium                                                                                                    |     |
| 0   | 1. Rigid Object in Equilibrium.                                                                                       | 4.5 |
| 2.  | 2. More on the Center of Gravity.                                                                                     | 4.5 |
|     | 3. Examples of Rigid Objects in Static Equilibrium                                                                    |     |
| 0   | Universal Gravitation                                                                                                 |     |
| 3.  | <ol> <li>Newton's Law of Universal Gravitation</li> <li>Free-Fall Acceleration and the Gravitational Force</li> </ol> | 4.5 |
|     | Fluid Mechanics                                                                                                       |     |
|     | 1. Pressure                                                                                                           |     |
| 4.  | 2. Variation of Pressure with Depth                                                                                   | 4.5 |
|     | 3. Pressure Measurements                                                                                              |     |
|     | 4. Buoyant Forces and Archimedes' Principle                                                                           |     |
|     | Fluid Mechanics                                                                                                       |     |
| 5.  | 5. Fluid Dynamics                                                                                                     | 4.5 |
| J.  | 6. Bernoulli's Equation                                                                                               | 4.5 |
|     | 7. Flow of Viscous Fluids in Pipes                                                                                    |     |
| 6.  | Lagrangian mechanics                                                                                                  | 4.5 |
| 01  | 1. Hamilton's Variational Principle                                                                                   | 1.0 |
| 7.  | Lagrangian mechanics                                                                                                  | 4.5 |
|     | 2. Generalized Coordinates                                                                                            |     |
|     | Lagrangian mechanics                                                                                                  |     |
| 8.  | 3. Calculating Kinetic and Potential Energies in Terms of Generalized                                                 | 4.5 |
| 0.  | Coordinates                                                                                                           | т.5 |
|     | 4. Lagrange's Equations of Motion for Conservative Systems                                                            |     |
|     | Lagrangian mechanics                                                                                                  |     |
|     | 5. Some Applications of Lagrange's Equations                                                                          |     |
|     | -The Harmonic Oscillator                                                                                              |     |
| 9.  | -Single Particle in a Central Force Field                                                                             | 4.5 |
|     | 6. Generalized Momenta                                                                                                |     |
|     | -Pendulum Attached to a Movable Support                                                                               |     |
| 10  | Lagrangian mechanics                                                                                                  | 1.5 |
| 10. | 7. The Hamiltonian Function                                                                                           | 4.5 |
|     | Total                                                                                                                 | 45  |
|     |                                                                                                                       |     |





**Table:** The matrix of consistency between the content and the learning outcomes of the course.

|          |     | Course Learning Outcomes |     |     |     |     |     |     |     |
|----------|-----|--------------------------|-----|-----|-----|-----|-----|-----|-----|
|          | 1.1 | 1.2                      | 1.3 | 1.4 | 2.1 | 2.2 | 2.3 | 2.4 | 3.1 |
| Topic 1  | V   |                          |     |     | V   |     |     |     | V   |
| Topic 2  |     | V                        |     |     |     | V   |     |     | V   |
| Topic 3  |     | V                        |     |     |     | V   |     |     | V   |
| Topic 4  |     |                          | V   |     |     |     | V   |     | V   |
| Topic 5  |     |                          | V   |     |     |     | V   |     | V   |
| Topic 6  |     |                          |     | V   |     |     |     | V   | V   |
| Topic 7  |     |                          |     | V   |     |     |     | V   | V   |
| Topic 8  |     |                          |     | V   |     |     |     | V   | V   |
| Topic 9  |     |                          |     | V   |     |     |     | V   | V   |
| Topic 10 |     |                          |     | V   |     |     |     | V   | V   |

### **D. Students Assessment Activities**

| No | Assessment Activities *                       | Assessment<br>timing<br>(in week no) | Percentage of Total<br>Assessment Score |
|----|-----------------------------------------------|--------------------------------------|-----------------------------------------|
| 1. | Homework, quizzes, reports, and presentation. | 1: 15                                | 10 %                                    |
| 2. | First term exam                               | 7: 8                                 | 20 %                                    |
| 3. | Second term exam                              | 12:13                                | 20 %                                    |
| 4. | Final exam                                    | End of<br>Semester                   | 50 %                                    |

### **E. Learning Resources and Facilities**

### **1. References and Learning Resources**

| Essential References  | Physics for Scientists and Engineers, 10th Edition, by Raymond A.<br>Serway, John W. Jewett, BROOKS/COLE CENGAGE Learning, Boston<br>USA,ASIN : B00E6TSR92, (2019). |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supportive References | Fundamentals of Physics Extended, 12th Edition, David Halliday, Robert Resnick, Jearl Walker, Wiley, 2021.                                                          |
| Electronic Materials  | <ul> <li>Blackboard.</li> <li>PowerPoint presentations.</li> </ul>                                                                                                  |





| Digital library of University of Bisha <u>https://ub.deepknowledge.io/Bisha</u> Other Learning Materials NA  2. Required Facilities and equipment |                           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|
| ltems                                                                                                                                             | Resources                 |  |
| facilities                                                                                                                                        | Classrooms, Physics lab.  |  |
| Technology equipment                                                                                                                              | Data show or smart board. |  |
| Other equipment                                                                                                                                   | NA                        |  |

### F. Assessment of Course Quality

| Assessment Areas/Issues                            | Assessor            | Assessment Methods                                 |
|----------------------------------------------------|---------------------|----------------------------------------------------|
| Extent of achievement of course learning outcomes. | Teachers, students. | Direct (Final exams),<br>Indirect (Questionnaire). |
| Effectiveness of teaching.                         | Teachers, students. | Indirect (Questionnaire)                           |
| Effectiveness of assessment.                       | Teachers, students. | Indirect (Questionnaire)                           |
| Quality of learning resources                      | Teachers, students. | Indirect (Questionnaire)                           |
| Quality of facilities available                    | Teachers, students. | Indirect (Questionnaire)                           |
| Fairness of evaluation                             | Peer reviewer.      | Direct (Final exams reevaluation).                 |

### G. Specification Approval Data

| COUNCIL /COMMITTEE | College of Science Council |
|--------------------|----------------------------|
| REFERENCE NO.      | 20                         |
| DATE               | 17 August 2023             |

